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Evaporating droplets
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The evaporation of droplets on a substrate that is wetting to the liquid is studied. The
radius R(t) of the droplet is followed in time until it reaches zero. If the evaporation
is purely diffusive, R ∝

√
t0 − t is expected, where t0 is the time at which the droplet

vanishes; this is found for organic liquids, but water has a different exponent. We
show here that the difference is likely to be due to the fact that water vapour is lighter
than air, and the vapour of other liquids more dense. If we carefully confine the water
so that a diffusive boundary layer may develop, we retrieve R(t) ∝

√
t0 − t . On the

other hand, if we force convection for an organic liquid, we retrieve the anomalous
exponent for water.

1. Introduction
The seemingly simple problem of an evaporating droplet has attracted a great deal

of attention (Picknett & Bexon 1977; Birdi, Vu & Winter 1989; Kuz 1991; Parisse &
Allain 1996; Deegan et al. 1997; Cachile, Benichou & Cazabat 2002a; Cachile et al.
2002b). It is an appealing problem; in our everyday life we are constantly confronted
with evaporating drops and their consequences: it is easy to find the circular deposits
left when a drop has dried up, e.g. the dark rings on the coffee table (Parisse &
Allain 1996, Deegan et al. 1997). The two situations that have been studied most
are droplets deposited on a rough substrate to which the contact line remains fully
anchored during the evaporation (Deegan 2000) and droplets of completely wetting
liquids deposited on a perfectly smooth and wetting surface for which no contact line
anchoring occurs (Cachile et al. 2002a, b).

Both problems are complicated because the form of the droplet during the
evaporation is a priori unknown, and because of the large number of effects that have
to be taken into account. For instance, the evaporation generally leads to a decrease of
the temperature within the droplet. This can lead to both a heat flux from the substrate
into the droplet, and to Marangoni effects (flows driven by surface tension gradients,
if the temperature within the droplet is not uniform (Redon, Brochart-Wyart &
Rondelez 1992; Kavehpour, Ovryn & McKinley 2002; Sultan, Boudaoud & Ben
Amar 2004). Also, in some cases hydrodynamic flows within the droplet have been
observed, and need to be taken into account (Savino & Fico 2004; Deegan et al.
1997).

Here we consider the – at first sight – very simple situation where no contact
line pinning occurs. This we do by looking at the evaporation of a perfectly wetting
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Figure 1. Water on mica: droplet radius vs. time; the spreading is followed by evaporation.

liquid on a perfectly flat surface: droplets of water and hexane on mica. For wetting
liquids such as these two the effects of the anchoring of the contact line are small; we
minimize these further by using a surface that is flat at almost the molecular scale.
Previous studies have made the interesting observation that the contact angle of such
a completely wetting but evaporating droplet can be non-zero (Bourges-Monnier &
Shanahan 1995). The interpretation of a non-zero contact angle for a completely
wetting liquid is not straightforward, since the equilibrium contact angle is given
by the (equilibrium) surface and interfacial tensions in the problem, and it is not
clear how to calculate such thermodynamic quantities in a non-equilibrium situation.
Consequently, the contact angle of evaporating drops is a subject of debate (Bonn &
Meunier 1997).

Closely related to the evolution of the contact angle is the time-dependence of
the droplet radius. Figure 1 shows an example for water on mica. On depositing of
a drop, since the water is perfectly wetting it starts to spread on the surface and
its radius increases in time. However, since the droplet evaporates at the same time,
its radius R starts to decrease shortly afterwards, to vanish at a time we denote t0
(Deegan 2000). Some simple scaling arguments may be used to predict the droplet
retraction at late times. Neglecting thermal and Marangoni effects (Davis 1987), it
is known that the evaporation rate is proportional to the perimeter of the droplet
dV/dt ∝ −2πR (Deegan et al. 1997; M. D. Betterton, M. P. Brenner & H. A.
Stone, personal communication), V being the volume of the droplet. Using V ∝ R2h

and considering that the contact angle is constant it follows by integration that
R ∝ (t0 − t)1/2.

This prediction has been compared with experimental data. In the experiments the
evolution of the radius was followed as a function of time for different simple and
perfectly wetting liquids having a different volatility. If the data are fitted to a power-
law behaviour, R ∝ (t0 − t)a , the values for a that are found are indeed all around
1/2 (Cachile et al. 2002a), in agreement with this simple argument.† On the other
hand, the value of a reported for water is 0.6; unfortunately, there is no error bar
on this exponent as only a single experiment was reported (Deegan 2000). Because
of the importance of the evaporation of water droplets, for instance for electricity

† They do differ significantly from it in a non-trivial way: the exponents found are slightly
smaller than 1/2, the reason for which is still unclear and we will not go into that here.
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Figure 2. Water on mica: a typical log-log plot of the radius as a function of the time to
vanishing R ∝ (t0 − t)a; a = 0.6.

generation, industrial cooling applications and for the climate, it is important to
establish that the difference really exists, and if so, what its causes could be.

To establish that the difference exists, we measured the time evolution of the radius
and weight of an evaporating water droplet placed on a freshly cleaved mica substrate.
The volume of the droplets was about 1–3 µl; the droplets were gently deposited on
the surface using a microsyringe. The largest radius these droplets attained was about
2–3 mm, similar to the capillary length (≈ 2.6mm). The water used was ultrapure,
from a Milli-Q-plus system. Under typical experimental conditions (T = 20 ◦C relative
humidity 40 %), the evaporation rate is about 3 × 10−3 mg s−1. Figure 2 shows a typical
log-log plot of the radius as a function of the time to vanishing. The final conclusion
from a large number of experiments is that the evaporation can be characterized by:
R(t) = C(t0 − t)a , where R is the radius of the drop, a = 0.61 ± 0.03 (error is one
standard deviation) and C = 0.1±0.04. We find that increasing the humidity changes
the evaporation rate, but not the exponent a. Similarly, the exponent appears robust to
changes in temperature. Effects of aging of the mica surfaces were not observed either.
Pinning of the droplets on defects of the substrate was occasionally observed, and
leads to non-circular droplets; these experiments have been discarded. It is important
to note that our results turn out to be independent of how close they are to the
vanishing time t0 of the drop. Experiments on much smaller droplets followed under
the microscope with a rapid camera (125 images s−1) down to the smallest radius of
25 µm show no difference between large and small drops. In other words, there is no
evidence from our experiments for a transition between two regimes.

In order to verify that the difference with other experiments does not come from the
mica surfaces that we use, we repeated the experiments for a simple liquid: hexane.
The result is shown in figure 3, and was again fitted to R(t) = C(t0 − t)a . Again
repeating the experiments a number of times, we obtain an exponent, a = 0.47±0.04,
in agreement with previous observations on various organic liquids (Cachile et al.
2002a).

Simultaneously with the measurement of the radius, we independently determined
the mass of the evaporating drop on a balance. This allowed us to verify how the
volume scales with the radius. For hexane deposited on mica, we find that the mass
scales with t1.5, meaning that the volume is proportional to R3 (figure 4a). This is what
would be expected if the droplet remained a spherical cap with a constant contact
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Figure 3. Evaporation of hexane droplets deposited on mica. R ∝ (t0 − t)a; a = 0.47.
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Figure 4. (a) Mass (g) as a function of the time (s) during the evaporation of a hexane droplet
deposited on a smooth hydrophilic surface (mica). (b) Mass (g) as a function of the radius
(mm) during the evaporation of a water droplet deposited on a smooth hydrophilic surface
(mica): M ∝ R2.3.

angle during the evaporation; if this is the case the height scales like the radius and
consequently the volume as the third power of the radius. For water, on the other
hand, the result is again different. Figure 4 shows that the mass of a water droplet,
and consequently the volume, is not proportional to R3 but to R2.3. Although the
error bar on the exponent for the vanishing of the mass in time is rather large, due
to the rather large uncertainty in the measured weight for small masses, it is evident
from the data that the height h decreases much more slowly than the radius R. This
implies that the contact angle increases during the evaporation, in sharp contrast
with what happens for organic liquids. For the latter the contact angle either remains
constant, or decreases somewhat at the final stage of the evaporation. This clearly
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Figure 5. Evaporation of a confined evaporating water droplet. R ∝ (t0 − t)a; a = 0.5.

shows that besides a difference in the numerical value of the exponent a there is
a qualitative difference between the evaporation of water droplets, and droplets of
organic liquids. For completeness, we measured the mass of a droplet evaporating
on a rough surface of teflon; the contact line is thus anchored and we find that the
volume scales as t1.7. Contact line pinning can consequently not be at the origin of
the different exponent for the vanishing of the mass.

All these results demonstrate that water is anomalous in the sense that its
evaporation appears different from that of all other liquids (Cachile et al. 2002a
measured four different alkanes). In addition, the results for water are different from
what is expected from our simple scaling argument.

In order to understand the difference, one needs to consider the evaporative flux,
which is determined by the undersaturation of the vapour. However, it is unclear
whether in general the transport in the vapour phase surrounding the droplet is
diffusive or convective. This is perhaps where the difference between water and all the
other liquids may lie. Namely, the ideal gas law tells us that at a given pressure, the
density of a gas is directly propotional to is molecular weight. The molecular weight
of water is 18 g mol−1, that of air roughly 30 and that of hexane 72. Therefore, water
vapour is less dense than air and all other liquids that have been examined have a
vapour density that is higher than that of air. The expectation is therefore that the
water vapour will rise, leaving unsaturated air around the droplet. The hexane vapour
should not rise, and it seems therefore plausible that the air around the hexane droplet
is more highly saturated.

In order to test this hypothesis, we performed two experiments. In one, we confined
an evaporating water droplet in a small (1.5 × 1.5 × 1.5 cm) box with only a small
opening at the top in order to retain a more highly saturated vapour in the droplet’s
environment. The result is shown in figure 5. The anomalous exponent disappears: we
find a = 0.53±0.04, again from a large number of experiments. On the other hand, we
took a standard cooling fan and refreshed the air over an evaporating hexane droplet
continuously, by sending and air stream with a velocity of 2 m s−1 over it. We retrieve
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the anomalous exponent for hexane with forced convection: a = 0.61 ± 0.04. These
two experiments are in complete agreement with the hypothesis suggested above, and
confirm our idea that water evaporation is not simply diffusive.

These experiments also shed some light on the value of the exponent, using the same
simple scaling arguments as above. If the evaporation is not controlled by diffusion,
there is no longer any reason why the evaporative flux should be proportional
to the circumference of the droplet. If convection is important, one would instead
expect the rate to be proportional to the surface area of the droplet. This leads to
dV/dt ∝ −πR2. Assuming again a constant contact angle it follows immediately that
R ∝ (t0 − t). The exponent 0.6 would then be intermediate between purely diffusive
(0.5) and ‘convective’ (1) behaviour. A quick check on whether this is reasonable can
be made by using the fan to force convection on a water droplet; if we do so we find
an exponent of 0.7 ± 0.02 shown) confirming this, and showing that indeed there is
nothing special about the value of 0.6. Improving on such a simple scaling argument
seems a formidable task, and an analytical theory would be difficult. In addition,
due to the large separation of length scales between the droplet and the precursor
film (that is indeed present on the substrate – see Cachile et al. 2002a) surrounding it,
numerics are very difficult also. This therefore remains an open problem for further
study.

The convection is described by the Rayleigh number, which compares buoyancy
forces (causing convection) to diffusive and viscous forces (working against it). For
our situation, the Rayleigh number can be defined as

Ra =
g�ρ/ρd3

νD
(1.1)

where g is the gravitational acceleration, �ρ/ρ the reduced density difference, ν the
kinematic viscosity and D the diffusion coefficient. If we take a �ρ/ρ of 1%, a 1 mm
radius drop, ν = 10−6 m2 s−1 and D = 10−5 m2 s−1, we have Ra = 10, which indicates
that the onset of convection is close in the experiments. Similarly, a characteristic
speed for the convection would be v =

√
(g�ρ/ρd) which gives v = 1 cm s−1. All this

seems reasonable, and indicates that convection, in the vapour phase, may play a role
in the evaporation of water droplets.

We thank J. Eggers, R. Deegan and W. van Saarloos for very helpful comments
and discussions. LPS de l’ENS is UMR 8550 of the CNRS, associated with the
Universities Paris 6 and Paris 7.
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